Adaptively Compressed Exchange Operator for Large-Scale Hybrid Density Functional Calculations with Applications to the Adsorption of Water on Silicene.

نویسندگان

  • Wei Hu
  • Lin Lin
  • Amartya S Banerjee
  • Eugene Vecharynski
  • Chao Yang
چکیده

Density functional theory (DFT) calculations using hybrid exchange-correlation functionals have been shown to provide an accurate description of the electronic structures of nanosystems. However, such calculations are often limited to small system sizes due to the high computational cost associated with the construction and application of the Hartree-Fock (HF) exchange operator. In this paper, we demonstrate that the recently developed adaptively compressed exchange (ACE) operator formulation [J. Chem. Theory Comput. 2016, 12, 2242-2249] can enable hybrid functional DFT calculations for nanosystems with thousands of atoms. The cost of constructing the ACE operator is the same as that of applying the exchange operator to the occupied orbitals once, while the cost of applying the Hamiltonian operator with a hybrid functional (after construction of the ACE operator) is only marginally higher than that associated with applying a Hamiltonian constructed from local and semilocal exchange-correlation functionals. Therefore, this new development significantly lowers the computational barrier for using hybrid functionals in large-scale DFT calculations. We demonstrate that a parallel planewave implementation of this method can be used to compute the ground-state electronic structure of a 1000-atom bulk silicon system in less than 30 wall clock minutes and that this method scales beyond 8000 computational cores for a bulk silicon system containing about 4000 atoms. The efficiency of the present methodology in treating large systems enables us to investigate adsorption properties of water molecules on Ag-supported two-dimensional silicene. Our computational results show that water monomer, dimer, and trimer configurations exhibit distinct adsorption behaviors on silicene. In particular, the presence of additional water molecules in the dimer and trimer configurations induces a transition from physisorption to chemisorption, followed by dissociation on Ag-supported silicene. This is caused by the enhanced effect of hydrogen bonds on charge transfer and proton transfer processes. Such a hydrogen bond autocatalytic effect is expected to have broad applications for silicene as an efficient surface catalyst for oxygen reduction reactions and water dissociation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptively Compressed Polarizability Operator for Accelerating Large Scale <i>Ab Initio</i> Phonon Calculations | Multiscale Modeling & Simulation | Vol. 15, No. 1 | Society for Industrial and Applied Mathematics

Phonon calculations based on first principle electronic structure theory, such as the Kohn–Sham density functional theory, have wide applications in physics, chemistry, and material science. The computational cost of first principle phonon calculations typically scales steeply as O(N4 e ), where Ne is the number of electrons in the system. In this work, we develop a new method for reducing the ...

متن کامل

NH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations

Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...

متن کامل

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

The structural and density state calculation of B Nitrogen doped silicene nano flake

In this paper, we study the effect of single Boron/Nitrogen impurityatom on electronic properties of a silicene nano flake. Our calculations are basedon density functional theory by using Gaussian package. Here, one Si atom insilicene nano flake substitutes with a Boron/Nitrogen atom. The results show thatsubstitution of one Si atom with single Boron/Nitrogen atom increases distanceof impurity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2017